首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34748篇
  免费   5758篇
  国内免费   4460篇
电工技术   1901篇
技术理论   2篇
综合类   3744篇
化学工业   2365篇
金属工艺   701篇
机械仪表   1287篇
建筑科学   1899篇
矿业工程   999篇
能源动力   606篇
轻工业   1023篇
水利工程   679篇
石油天然气   713篇
武器工业   150篇
无线电   3172篇
一般工业技术   2492篇
冶金工业   2689篇
原子能技术   139篇
自动化技术   20405篇
  2024年   276篇
  2023年   1989篇
  2022年   3182篇
  2021年   3165篇
  2020年   2646篇
  2019年   1851篇
  2018年   1383篇
  2017年   1214篇
  2016年   1307篇
  2015年   1301篇
  2014年   1884篇
  2013年   1687篇
  2012年   1864篇
  2011年   2180篇
  2010年   1760篇
  2009年   1818篇
  2008年   1806篇
  2007年   1864篇
  2006年   1696篇
  2005年   1523篇
  2004年   1272篇
  2003年   1148篇
  2002年   1049篇
  2001年   822篇
  2000年   706篇
  1999年   571篇
  1998年   488篇
  1997年   405篇
  1996年   335篇
  1995年   295篇
  1994年   233篇
  1993年   197篇
  1992年   183篇
  1991年   117篇
  1990年   99篇
  1989年   84篇
  1988年   55篇
  1987年   48篇
  1986年   56篇
  1985年   24篇
  1984年   24篇
  1982年   17篇
  1965年   24篇
  1964年   25篇
  1963年   23篇
  1961年   17篇
  1959年   16篇
  1958年   16篇
  1957年   22篇
  1955年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Engineering simulations have opened several gates for today’s chemical engineers. They are powerful tools to provide technical content as physics-based numerical solvers. Augmented reality (AR) and virtual reality (VR), on the other hand, are already underway to digitize environments in many fields. The combination of AR/VR environments and simulations in engineering education has been attracting widespread interest. Literature has demonstrated a massive amount of digital educational environments in several contexts as being complementary to conventional educational methods. Nevertheless, hosting technical content produced by engineering simulations with educational AR/VR is still challenging and requires expertise from multiple disciplines throughout the technical development. Present work provides a facile and agile methodology for low-cost hardware but content-wise rich AR software development. Inspired by the Covid-19 pandemic, a case study is developed to teach chemical-engineering concepts using a liquid-soap synthesis process. Accordingly, we assess and conclude the digital development process to guide inexperienced developers for the digitalization of teaching content. The present contribution serves as an example of the power of integrating AR/VR with traditional engineering simulations for educational purposes. The digital tool developed in this work is shared in the online version.  相似文献   
12.
机器人工程是在国家新工科发展战略背景下为了适应机器人专业人才需求而新近创建的专业。本文依托东南大学机器人工程专业教学体系,介绍了“感知与人机交互”课程的教学实践,探索了PBL教学模式在本门课程中的应用。具体介绍了课程教学内容设置、PBL教学方案例设计及存在问题分析等,可为自动化类机器人工程专业的相关课程教学实践提供参考。  相似文献   
13.
14.
Membrane electrode assembly (MEA) is considered a key component of a proton exchange membrane fuel cell (PEMFC). However, developing a new MEA to meet desired properties, such as operation under low-humidity conditions without a humidifier, is a time- and cost-consuming process. This study employs a machine-learning-based approach using K-nearest neighbor (KNN) and neural networks (NN) in the MEA development process by identifying a suitable catalyst layer (CL) recipe in MEA. Minimum redundancy maximum relevance and principal component analysis were implemented to specify the most important predictor and reduce the data dimension. The number of predictors was found to play an essential role in the accuracy of the KNN and NN models although the predictors have self-correlations. The KNN model with a K of 7 was found to minimize the model loss with a loss of 11.9%. The NN model constructed by three corresponding hidden layers with nine, eight, and nine nodes can achieve the lowest error of 0.1293 for the Pt catalyst and 0.031 for PVA as a good additive blending in the CL of the MEA. However, even if the error is low, the prediction of PVA seems to be inaccurate, regardless of the model structure. Therefore, the KNN model is more appropriate for CL recipe prediction.  相似文献   
15.
Higher transmission rate is one of the technological features of prominently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO–OFDM). One among an effective solution for channel estimation in wireless communication system, specifically in different environments is Deep Learning (DL) method. This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder (CNNAE) classifier for MIMO-OFDM systems. A CNNAE classifier is one among Deep Learning (DL) algorithm, in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another. Improved performances are achieved by using CNNAE based channel estimation, in which extension is done for channel selection as well as achieve enhanced performances numerically, when compared with conventional estimators in quite a lot of scenarios. Considering reduction in number of parameters involved and re-usability of weights, CNNAE based channel estimation is quite suitable and properly fits to the video signal. CNNAE classifier weights updation are done with minimized Signal to Noise Ratio (SNR), Bit Error Rate (BER) and Mean Square Error (MSE).  相似文献   
16.
This study presents a new systematic algorithm to optimize the durability of reinforced recycled aggregate concrete. The proposed algorithm integrates machine learning with a new version of the firefly algorithm called chaotic based firefly algorithm (CFA) to evolve a rational and efficient predictive model. The CFA optimizer is augmented with chaotic maps and Lévy flight to improve the firefly performance in forecasting the chloride penetrability of strengthened recycled aggregate concrete (RAC). A comprehensive and credible database of distinctive chloride migration coefficient results is used to establish the developed algorithm. A dataset composite of nine effective parameters, including concrete components and fundamental characteristics of recycled aggregate (RA), is used as input to predict the migration coefficient of strengthened RAC as output. k-fold cross validation algorithm is utilized to validate the hybrid algorithm. Three numerical benchmark analyses are applied to prove the superiority and applicability of the CFA algorithm in predicting chloride penetrability. Results show that the developed CFA approach significantly outperforms the firefly algorithm on almost tested functions and demonstrates powerful prediction. In addition, the proposed strategy can be an active tool to recognize the contradictions in the experimental results and can be especially beneficial for assessing the chloride resistance of RAC.  相似文献   
17.
Having accurate information about the hydrogen solubility in hydrocarbon fuels and feedstocks is very important in petroleum refineries and coal processing plants. In the present work, extreme gradient boosting (XGBoost), multi-layer perceptron (MLP) trained with Levenberg–Marquardt (LM) algorithm, adaptive boosting support vector regression (AdaBoost?SVR), and a memory-efficient gradient boosting tree system on adaptive compact distributions (LiteMORT) as four novel machine learning methods were used for estimating the hydrogen solubility in hydrocarbon fuels. To achieve this goal, a database containing 445 experimental data of hydrogen solubilities in 17 various hydrocarbon fuels/feedstocks was collected in wide-spread ranges of operating pressures and temperatures. These hydrocarbon fuels include petroleum fractions, refinery products, coal liquids, bitumen, and shale oil. Input parameters of the models are temperature and pressure along with density at 20 °C, molecular weight, and weight percentage of carbon (C) and hydrogen (H) of hydrocarbon fuels. XGBoost showed the highest accuracy compared to the other models with an overall mean absolute percent relative error of 1.41% and coefficient of determination (R2) of 0.9998. Also, seven equations of state (EOSs) were used to predict hydrogen solubilities in hydrocarbon fuels. The 2- and 3-parameter Soave-Redlich-Kwong EOS rendered the best estimates for hydrogen solubilities among the EOSs. Moreover, sensitivity analysis indicated that pressure owns the highest influence on hydrogen solubilities in hydrocarbon fuels and then temperature and hydrogen weight percent of the hydrocarbon fuels are ranked, respectively. Finally, Leverage approach results exhibited that the XGBoost model could be well trusted to estimate the hydrogen solubility in hydrocarbon fuels.  相似文献   
18.
As the first review in this field, this paper presents an in-depth mathematical view of Intelligent Flight Control Systems (IFCSs), particularly those based on artificial neural networks. The rapid evolution of IFCSs in the last two decades in both the methodological and technical aspects necessitates a comprehensive view of them to better demonstrate the current stage and the crucial remaining steps towards developing a truly intelligent flight management unit. To this end, in this paper, we will provide a detailed mathematical view of Neural Network (NN)-based flight control systems and the challenging problems that still remain. The paper will cover both the model-based and model-free IFCSs. The model-based methods consist of the basic feedback error learning scheme, the pseudocontrol strategy, and the neural backstepping method. Besides, different approaches to analyze the closed-loop stability in IFCSs, their requirements, and their limitations will be discussed in detail. Various supplementary features, which can be integrated with a basic IFCS such as the fault-tolerance capability, the consideration of system constraints, and the combination of NNs with other robust and adaptive elements like disturbance observers, would be covered, as well. On the other hand, concerning model-free flight controllers, both the indirect and direct adaptive control systems including indirect adaptive control using NN-based system identification, the approximate dynamic programming using NN, and the reinforcement learning-based adaptive optimal control will be carefully addressed. Finally, by demonstrating a well-organized view of the current stage in the development of IFCSs, the challenging issues, which are critical to be addressed in the future, are thoroughly identified. As a result, this paper can be considered as a comprehensive road map for all researchers interested in the design and development of intelligent control systems, particularly in the field of aerospace applications.  相似文献   
19.
In this study, sea bream, sea bass, anchovy and trout were captured and recorded using a digital camera during refrigerated storage for 7 days. In addition, their total viable counts (TVC) were determined on a daily basis. Based on the TVC, each fish was classified as ‘fresh’ when it was <5 log cfu per g, and as ‘not fresh’ when it was >7 log cfu per g. They were uploaded on a web-based machine learning software called Teachable Machine (TM), which was trained about the pupils and heads of the fish. In addition, images of each species from different angles were uploaded to the software in order to ensure the recognition of fish species by TM. The data of the study indicated that the TM was able to distinguish fish species with high accuracy rates and achieved over 86% success in estimating the freshness of the fish species tested.  相似文献   
20.
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号